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abstract

The spatial structure of quark Cooper pairs in two-flavor quark matter is investigated numerically
within the framework of a modified QCD-like effective model, in which the lattice-QCD-based
gluon propagator is used. The propagator is considered to include the nonperturbative effects
in the quenched QCD. We consider [-equilibrated quark matter with electric charge neutrality
condition. We find that the coherence length & ~ 1.1 fm at low to moderate quark chemical
potential (0.2 < p < 0.7 GeV). Cooper pair is considered to be bosonic at p < 0.4 GeV, because
¢/d < 1 in the region(d: interquark distance). Therefore, in the universe, the quark-Bose-Einstein
condensation may exist inside some of compact stars.

Furthermore, we investigate quark stars in our model. We find that, for example, at Bi =150MeV,
the maximum mass is 1.92M,, and its radius is 10.61km (M,y, : solar mass, B : bag constant).

Key words: QCD-like model, compact star constraints, Bose-Einstein condensation, quark star

I . Introduction

A lot of studies on the phase structure of the quantum chromodynamics (QCD) demon-
strate that, at sufficiently high temperature (T') and/or quark chemical potential (u), a
system with quarks and gluons make a phase transition from confinement phase (hadronic
matter) to deconfinement one (quark-gluon plasma or color superconductor).”~'? The recent
progress in mapping the QCD phase diagram has revealed that the deconfinement phase at
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low temperature has a rich phase structure including two-flavor color superconducting (2SC)
phase and clor-flavor locking (CFL) phase.'3!4) In the universe, we may expect that such
quark matters exist inside compact stars.'®~17) Quark matter inside a compact star should
be neutral with respect to electric as well as color charges. Especially, electric charge neu-
trality is essential to hold the star together by the gravitational force.'6)17)

Some physicists claimed that, under charge neutrality condition, there will be no 25C
phase. In the study, they adopted the framework of the bag model, in which the strange quark
mass was very small and the value of the diquark energy gap was arbitrarily determined.'®

However, in some studies, it was found that 25C phase exists even under compact star
constraints.’®) =20 Furthermore, it is shown that the charge neutral 25SC phase is a stable
state.?!) Later, even one of the authors in ref. 22) have discussed the possibility of energeti-
cally stable flux tube within the 2SC core region in neutron star.??

For compact stars, relevant baryon chemical potential (up = 3u) lies in low to intermedi-
ate region (u < 0.5 GeV, the density might be as large as 10py where py ~ 0.46 fm™3).16) At
high-p region, strangeness is indispensable. However, as the value of u decreases, strangeness
becomes more unimportant. Accordingly, at low to moderate u region, especially near the
deconfining point, quark matter may lie in a 2SC phase that is made up with only up and
down quarks.

In cold quark matter, if quark-quark interaction is strong enough, the quarks of a Cooper
pair (quark-quark pair) may exist close to each other, in consequence, Cooper pairs may
be in Bose-Einstein condensation (BEC). In BEC phase, coherence length (£), which is the
squared mean distance of two paired particles, is smaller than the averaged interparticle
distance (d) of relevant particles (§/d < 1). Because of the asymptotic freedom of QCD,
quark-quark coupling strength subsides as p grows. Accordingly, realizability of quark-BEC
increases as u decreases. Therefore, the vicinity of the deconfining point is the most probable
area for the quark BEC. Recently, some studies have been reported concerning £ and spatial
structure of quark Cooper pairs in 2SC based on the Schwinger-Dyson equation (S-D eq.).
In these studies, the tree-level gluon propagator is used. This simplification may result in
ignoring possible nonperturbative effects. It is shown in Ref. 9) that the S-D eq. for the
effective mass in the ladder approximation can be derived from the QCD-like theory with
the tree-level gluon propagator, which is the usual choice in the theory. We can also show
that the S-D eq. for diquark energy gap in the ladder approximation can be derived from
the same theory. In the QCD-like theory, the one-loop running coupling (g) is introduced
instead of the coupling constant (g) for the quark-gluon vertex. By this improvement, the
asymptotic freedom of QCD is satisfied.

The main purpose of the present study is to investigate possibility of the quark-BEC
inside a compact star. Electric charge neutrality is imposed for S-equilibrated quark matter.
We make use of the lattice-QCD-based gluon propagator instead of the tree-level one in the
3-momentum space, investigation of the £ in 25C under compact star constraints (i.e., charge
neutrality and f—equilibrium) within the framework of the QCD-like gauge field theory in
the mean-field approximation. The lattice-QCD-based gluon propagator, which is extracted
from the lattice QCD data, exhibits the infrared vanishing and strong enhancement at the
intermediate-energy region p ~ 1 GeV. The propagator is considered to include the non-
perturbative effects in the quenched QCD. The intermediate energy region is demonstrated
to be the most important region for dynamical chiral symmetry breaking. Throughout the
paper, we restrict ourselves to Ny = 2, corresponding to a system of up and down quarks.
The g-q interaction is most attractive in the Lorentz scalar, total spin singlet (J = 0),
color anti-triplet (3) and, therefore, flavor anti-symmetric channel. Consequently, nonzero
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diquark condensate (¢Cy5q) breaks color SU(3) symmetry down to SU(2) symmetry. Color
symmetry breaking as well as dynamical chiral symmetry breaking are nonperturbative phe-
nomena in QCD. Therefore, assuming that the same gluon propagator works for not only
7-q interaction in the CSB phase but also ¢g-g interaction in the chirally symmetric phase,
we attempt to combine the QCD-like theory and the lattice-QCD-based gluon propagator
for the investigation.

The outline of the paper is as follows. In the next section, we derive the Fierz-rearranged
effective Hamiltonian with gluon exchange interaction for two flavors. We combine the
lattice-QCD-based gluon propagator with the QCD-like gauge field theory. In §3, we derive
a gap equation for momentum-dependent diquark energy gap function A(p) in the mean-field
approximation and the electric charge-neutrality condition for two flavors. In §4, we give the
equation for coherence length. In §5, we solve the gap equation and compute Cooper pair
wave function and coherence length, and present the numerical results. In §6, we present the
equation of state (EoS) of 25C in our model. In §7, the sequence of quark stars corresponding
to the EoS is investigated. Section 8 is devoted to discussions.

H . Effective Hamiltonian

We derive here the Fierz-rearranged effective Hamiltonian with lattice-QCD-based gluon
propagator. The effective Hamiltonian (H) that we start with is?3),

H = Hy+ Hy, (1)

where

H = [ @56 - po - m)¥(a), )

H = [ #sdy Um0 v D6 - )Ta)r S v) ®)

with current quark mass m, the coupling constant g2 and the color SU(3) matrices A4. Here,
the gluon propagator D(z — y) is given by

dPp d(p*) e
N (“’_y):/ G 2 S (4)

where d(p?) is the polarization factor.

In this study, for the polarization factor, we adopt that of the lattice-QCD-based gluon
propagator which is derived using the quenched lattice QCD data.

The polarization factor d(p?) is well described by the following analytic function?425):

1 2
P ap
dip¥) = Z £~ & 5
(v°) It +ap? + 3’ (5)
where p = |p|, a = 7.887 GeV?, a = 1.254 GeV?, 3 =0.7175 GeV* and Z, = 0.7172.
In this study, we concentrate on the Lorentz scalar ¢Cy5q(gC"sq) bilinears in two-flavor
quark matter. In 25C phase, a nonzero diquark condensate consists of only two of the three

colors.
We assume that the most important interactions are those involving Cooper pairs that
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have the lowest energy. Therefore, we select zero-momentum Cooper pairs. Performing Fierz-
rearrangement and then dropping all other interactions, the relevant Hamiltonian becomes

H= ffo + ﬂ] (6)
where
Ay = Y (ep—WCK (P)CE (D) + R~ L @)
P
o 1 @,s i ‘
H = —4° Do, )05 (p)CR" (-p)CF' (~p')CK (@)
p.p’
X €aB3€v63€stCij
+R— L, (8
where
i(lp—p'*)
D(p,p)) = ‘__7 9
(p ) Ip— p'2 ( )

Here C’Lo(‘f) /Cr(1) denotes the creation/annihilation operator of a right(left)-handed particle

with color & and flavor s, e, = \/|p|? + m?, g% = %92, a, 3,7, 6 denote color indices, ¢, j, s,
denote flavor indices.

We assuse that the Fermi sphere of the quarks bearing the third color is intact. We choose
a variational wave function for the ground state |¥,) of the form,

v, = Ul wt0), (10)
where
vh o= ] e+ uCR ()CE(—P)capsead, (D
8,t,,3,p
¥, = R-1L, (12)

Here, the color indices a and [ run from 1 to 2, and the parameters obey the constraint that
up + vl = 1. (13)
Then, we find that the diquark condensate is calculated as

<\Ijg|C;rza’s(p)Cszﬁ’t(_p)eaﬂSESA\I}g> = (N — 1) Nupup. (14)

1. Charge-neutral two-flavor quark matter

In this section, we derive the gap equation in an electrically neutral two-flavor quark
matter. It is very likely that color superconducting phase may exist inside some of the
compact stars, where the charge neutrality condition should be satisfied. Furthermore, the
quark matters inside compact stars need to satisfy the S-equilibrium, that is, S-processes
such as (d » u+e~ +7,, u+e~ — d+v,) should go with equal rate in opposite direction.
As a result, when neutrinos are untrapped, chemical potentials of up quark (u,), down quark
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(q) and electron (u.) satisfy a relation, pg = gy + pte. In this study, we introduce only the
electric charge neutrality, and ignore the color-charge one.
The net charge of the two-flavor quark matter () is given by

2 1
Q = gnu — gnd — Ne. (15)

In addition, we note that the particle number densities can be calculated as

o0
n; = ——, 16
7 8 :u’j ( )
where j denotes up quark, down quark and electron.
With these in mind, we set the chemical potentials ug, 1, as follows:
2 1 - M + Hd Le
u = — G Me . o Hes = 5 L 17
Hu = 1= 2 p Ha=pt p fi ) p=g (17)

Adding only the effect of nonzero diquark condensate on thermodynamic potential at
i = [ to the thermodynamic potential of noninteracting unpaired quark matter, we obtaine
the approximated thermodynamic potential in the charge-neutral system Q gy as

Qey = <\P9’FI - ,uuNu - ﬂdel\I’!J)A#O = <\IIQ|I;I - ou'uNu = Nde|qlg>A=0
+Qf'ree

= 2(N.—1) Z [2(ep — M)vyg — Aptupvp — Apupuy

1-— i Qe
( \/ #)2”+ g
1 1 A2

+Qfree (18)

where Q. is the thermodynamic potential of the free particle system,

_ Buq + 3pg +
Qf'ree - 127_[_2 N (19)
and
By = \/(ep —7)* + AL (20)
Here, we introduce the gap function Ap:
= 59" Z D(p, p')(Crr)(—P")Crr)(P)) (21)
= (N, — 1)Nf7 > " D(p, p')upvp. (22)
p/
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In addition, we find that
(Cr(1)(—P)Cr1) (p)) = upvp = E
= ¢(p). (23)

If the extremum of the thermodynamic potenyial Q2 ¢y is realized by Ap, it must satisfy
the following stationary condition:

0Qen
=0 24
which yields the following gap equation
1)N
Ap = |43 " D(p,p)) : (25)
p:p p=p

In the QCD-like theory, the one-loop running coupling (g) is introduced instead of the
coupling constant (g) for the quark-gluon vertex with an infrared regularization parametor

PR

2mh
o b 26
g =g @) log[(p® 4 p}h)/Noep) -
where
AEATE
6(Ne — 1) (27)

T 2N,(11 —2N,;/3)’

It should be noted that the asymptotic freedom in the deep Euclidean region is satisfied
by this running coupling g.
Then, the gap equation we ought to solve is

(Nr— 1)‘Nf/ dp =2 / A
A, = |[——
p 75 5,29 (0 P)D(p~ p)BE
_ / i Dy L))+ d) -
12n2 By (p—p)VHap-p)P+p|
L p=E
where p = |p].
The electrical charge-neutrality condition is given by
Oew
0 -—
Ote

= ol @ 2 _ 2.8 e-mr(L- !
- T3 2T e BB\ R T (Ve
2u3 — iy — gl

+ -
32

, (29)
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IV. Coherence length £

The two-body wave function of a quark Cooper pair apart from unimportant normalization
constant ¢(r) is given by

d*p ipr
b(r) = / Gat(p)e
- / P9 o)ialer), (30)

22

where ¢(p) = QAT‘; and jo(pr) = q";f%’) is the zeroth-order spherical Bessel function of the 1st

kind with p = |p| and r = |r|.
The coherence length (£), which is defined by the squared mean distance of twopaired

particles, can be calculated as
- | d*r|(r)[*r? 3 (31)
O\ [ drlemP )

The averaged interparticle distance (d) of quarks of color 1 and 2 is given by
d e~ ,0_%, (32)

where p is the relevant quark density.

V . Spatial structure

In this section, we calculate the coherence length £ of quark Cooper pairs using the
momentum-dependent pair wave function by solving the gap equation. For the numerical
calculation, we set the values of Agep and the infrared regulator(pg) in the running coupling
to 220 MeV and 2.207Ag¢p, respectively.

The pair wave functions ¢ in momentum and in co-ordinate spaces are plotted in Fig. 1
and Fig. 2, respectively. As shown in Fig. 1, the pair wave functions in momentum space
have finite values at |p| = 0, enhanced at |p| ~ 4, and then decrease as |p| grows. While,
as shown in Fig. 2, the pair wave functions in co-ordinate space have the maximum values
at |r| = 0, and decrease as |r| grows. In addition, we find that the value of ¢(r) at |r| = 0
increases as u increases. This means that two quarks in a Cooper pair get close to each other
as 4 grows.

Figure 3 plots the value of u. as a function of p. The value of u. increases monotonically
as u increases.

Figure 4 plots the quark number density p as a function of u. The values of p at = 0.4
GeV and at u = 0.5 GeV are p = 3.55p9 and p = 6.82p,, respectively (pg: nuclear matter
density).

Figure 5 plots the coherence length (£) and the averaged interparticle distance of the
relevant quarks (d) as functions of quark chemical potential (1). £ as well as d decreases
monotonically as y grows. The lines cross at p ~ 0.4 GeV. The values of £ at u = 0.4 GeV
and at 4 = 0.5 GeV are 1.1 fm and 1.0 fm, respectively.

Figure 6 displays the ratio {/d as a function of u. The ratio increases almost linearly as
p grows (€/d ~ 1.74p + 0.342). At u < 0.4 GeV, £/d < 1.
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VI . Equation of state

In this section, we display the equation of state of the charge-neutral two-flavor quark
matter in the chiral limit on the P (pressure)-E (energy density) plane.
Energy density (F) can be calculated using Q¢n as,

E = —P+pn;
g
= Qp— pj—— 33
B :u’J E)ﬂz‘j ) ( )
where 4 stands for up quark, down quark and electron,
and
QBEQCN+B. (34)

Here we introduce the bag constant B.
Figure 7 plots the pressure P of the quark matter as a function of E at B i=150MeV.
We find a linear relation that £ = 2.9P + 3.95.
Figure 8 plots P vs p at Bi=150MeV.

VI. Quark stars

In this section we investigate the sequence of quark stars corresponding to the equation
of state (EoS) in this model.

We consider a static, stationary and spherically symmetric perfect fluid for the stellar
system. With these conditions, Einstein’s field equation yield the Tolman-Oppenheimer-
Volkov (TOV) equation for hydrostatic equilibrium in general relativity'®):

; . P(r) A P(r)
Aer?dr B(r)M (r) [I + K%] [l 1 WM{r)r }
r2 ' | _ 2M0) '

il

—4nr?dP(r) =

(35)

where we denote the pressure at a radius 7 by P(r), energy density by E(r) and the mass
inside a radius r by M(r):

M(r) = / Arr E(r')dr'. (36)
JA)

We integrate the TOV equation according to the EoS shown in Fig. 7 from the center
with a given central energy density until the pressure becomes zero. As a result, a unique
relationship among the mass, radius and central energy density is obtained.

Figures 9 and 10 show the sequence of quark stars corresponding to the EoS shown in
Fig. 7. Figure 9 shows the relation of M/M,,, vs central energy density E(0). It is seen
that M /My, increases as E(0) increases. The maximum mass of the sequence is about
1.92M,,,. Figure 10 displays the mass vs radius (R) relation. The radius decreases as the
mass increases.

Furthermore, we investigate effect of the bag constant (B) on the maximum mass and the
radius. Figure 11 plots the maximum mass as a function of B i Figure 12 plots the radius
vs Bi. We find that both M, and R monotonically decreases as B increases.

Figure 13 shows the interior structure of a quark star with E(0) = 1140 MeV/fm3(=
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2.0 x 10'® g/em?, p = 6.55p, at u = 480 MeV) at Bi=150MeV as an example. The values
of r — 2M(r) are positive everywhere inside the quark stars. This quark star has the mass
of M =1.92M,,, and the radius of R = 10.61 km.

VIII . Numerical results

0.5 e ? o°
oo.. od
0.4'.8'
o 1=0.5
~ 0.3 °
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©90.2 1©=0.3 ° .
° °
0.1 ‘. °
°
] oo.:::J

0 0.20.40.60.8 1 1.2 1.4
_)
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Figure 1: Cooper pair wave functions in momentum space ¢(p) at u = 0.3 GeV and at
p=0.5 GeV.
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Figure 2: Cooper pair wave functions in co-ordinate space ¢(7) without normalization con-
stant.
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Figure 3: The value of p. as a function of p.
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Figure 4: Quark density p as a function of p. The densities at 4 = 0.4 GeV and at = 0.5
GeV are p = 3.55p and p = 6.82py, respectively (po: nuclear matter density).
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Figure 5: The coherence length (§) and the interquark distance (d) as functions of u. The
values of £ at 4 = 0.4 GeV and at y = 0.5 GeV are 1.1 fm and 1.0 fm, respectively.
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Figure 6: Ratio £/d as a function of u. The ratio £/d increases almost linearly as y grows
(€/d ~ 1.74p + 0.342).
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Figure 7: The pressure (P) as a function of the energy density (F) at B i = 150MeV.
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Figure 8: The pressure (P) as a function of the quark chemical potential p.
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Figure 9: Mass-central energy density relation for quark stars corresponding to the EoS
shown in Fig.7.
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Figure 10: Mass-radius relation for quark stars corresponding to the EoS shown in Fig.7,
where M., = 1.99 x 10% g.

53



L AN
1.9: Ng
18 o

1.7§ ~N
16| ~
15| e

M max/ MSun

S S - = SRS N U LS T FLN R i S i P |

N VR A N Y T L e
0.140 0.145 0.150 0.155 0.160 0.165 0.170

BY* (Mev)

Figure 11: The maximum mass (M., ) as a function of the bag constant Bi

—y—r—7—7T—T——7r—r

115 ™.
11.0 S
105 Ne

9.0 \
gsh S

0.140 0.145 0150 0155 0160 0165  0.170

BY* (Gev)

Figure 12: The quark star radius (R) as a function of the bag constant B :

54



~
3 ~N
~N
04 \
~N
8~3 ~
Q ~N
2 \\
1 \\
~N
0k i | PR VI A [T P
0 2 4 6 8 10
I’ (Km)

Figure 13: The inner structure of the quark star with F(0) = 1110 MeV/fm® (2.0 x
10'% g/em3). M = 1.92My,.

IX . Discussions

In this paper, coherence length £ of quark Cooper pairs in two-flavor quark matter have
been investigated under compact star constraints. We have performed this study within the
framework of a modified QCD-like theory, in which the lattice-QCD-based gluon propagater
which is extracted from the quenched lattice QCD data, is used instead of the tree-level one.
The lattice-QCD-based gluon propagator is considered to include all the nonperturbative
effects in the quenched QCD.

So far a few studies were reported about coherence length £ of quark Cooper pairs
for two flavors. In Ref. 26) and 27), the one-loop Schwinger-Dyson(S-D) equation in the
ladder approximation with infrared safe running coupling is used for obtaining Cooper pair
wave function. In one of them(Ref.27)), they reported the result only in relatively high
density region(s > 0.8 GeV). In the other(Ref.26)),the result in the intermediate density
region(0.3 < 1 < 0.65 GeV) was reported. In addition, we find that the quasiparticle energy

in Ref. 26) is that for one-flavor system, because it contain 3A; (Eﬁ = \/(ep —pn)?+ 3Az27)

instead of Ay (Eﬁ = \/ (eg — )2+ Af_).). Fortunately, £ is not affected by the coefficient in

front of the gap energy(A) in the quasiparticle energy. However, the coefficient affects the
magnitude of the gap energy Ay As mentioned before, it is shown in Ref. 9), that the
one-loop S-D eq. with the ladder approximation can be derived from the QCD-like theory
with the tree-level gluon propagator.

In the weak-coupling region, which appears in the high density quark matter because
of asymptotic freedom of QCD, the coherence length £ becomes larger than the interquark
distance d, while the strong coupling region may appear in low to moderate density quark
matter (especially in the vicinity of the deconfining point). For compact stars, relevant
baryon chemical potential (g = 3u) lies in low to moderate density region (u < 0.4 GeV,
the density might be as large as 10py where pg ~ 0.46 fm™®). The Cooper pair whose ¢ is
smaller than d suggests that BEC description may be useful as in the analogous example in
condensed matter physics.
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In our model, we have found the small size Cooper pairs as compared with the interquark
distance (£/d < 1) at u < 0.4 GeV. Accordingly, the Cooper pairs in the charge-neutral two-
flavor quark matter which might exist in the core of compact stars could be rather bosonic
and different from that expected from the weak-coupling BCS picture. This situation is
similar to the strong-coupling superconductor which could be described by BEC of tightly
bound Cooper pairs. Therefore, in the universe, the quark-BEC may exist inside some of
the compact stars.

As shown in this study, the averaged chemical potential & is reduced by p./6 > 0 as
= (g + pa)/2 = p — pe/6. It is found that the repulsive vector interaction has a similar
effect.?®) Both reduce the quark chemical potential. The point is that the vector channel
interaction (Gy < Uy°¥ >) enters the dynamics like the electron chemical poyential . as
tr = p—Gy < U7°¥ > where p, stands for effective renormalized quark chemical potential,
Gy > 0 denotes the repulsive vector coupling and < U4°W¥ > is the quark number density.
Therefore, when we introduce the electric-charge neutrality and the repulsive vector channel
interaction simultaneously, the coherence length will be longer at each . Consequently, the
value of u at ¢ = d will make an upward shift and, as a result, the region where quark-BEC
may exist will be widened.

It should be noted that, in this study, we ignored the p—dependence of the coupling
strength. Therefore, if we use a y—dependent running coupling, we may obtain more or less
different result especialy in relatively high p region.

The equation of state (EoS) in our model shows a linear relation that £ = 2.9P + 3.9B,
which is similar to that in the MIT bag model. In the bag model, we have £ = 3P + 4B.
However, EoS in our model is slightly stiffer than that in the MIT simple phenomenological
bag model.*®) For example, at Bi=150MeV, in the bag model, P ~297 MeV /fm® at E = 1110
MeV/fm®. While in our model, P~308 MeV /fm® at £ = 1110 MeV/fm®. The bag constant
have a large effect on equation of state (EoS) and hence on maximum mass (Mpe,) and
radius (R) of quark stars. We have found that both M., and R monotonically decrease as
B increases.

We have found that the quark stars in the our model have reasonable relations among
masses, radii and central energy densities. The masses are of order M,,,, the radii are
of order 10 km and the central energy densities are of order 10! g/cm®. The maximum
mass ( M,,;) of the sequence in our model at B i=150MeV is about 1.92M,, and its radius
is about 10.6 km. The quark star masses of the sequence in this model are heavier than
the typical mass of observed neutron stars, 1.35 + 0.04M,,,*?). However, effects from the
strong interaction such as color superconductivity can stiffen the quark matter EoS and
increase the maximum mass of a compact star. In fact, a recent estimate of a pulsar mass
has shown a possibility of a larger mass. Demorest et al. have estimated the mass of a
compact star, which is a millisecond pulsar(PSR J 1614—2230)30). The estimated pulsar mass
of 1.97 4+ 0.04M,,,, is comparable to the M,,,, in the present model.

We expect that we can generalize our model into three-flavor system.
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