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Thermodynamics of Color Superconductor in a QCD-like Effective Theory

Hiyoshi KIUCHI
Faculty of Health Science, Ryotokuji University

abstract

We have investigated the thermodynamics of two-flavor color superconductor (25C) at finite tem-
perature (T") and quark chemical potential (1) within the framework of a QCD-like effective theory, in
which an asymptotically free momentum-dependent running coupling is used. Two kinds of systems
have been investigated. One is with a tree-level gluon propagator (model A) and the other is with
the lattice-QCD based (LQB) gluon propagator (model B). We have found that 2AI:=J{}"., = 3.43kpT,
in model B (A:energy gap, kp:Boltzmann constant, T,:critical temperature). This value is very close
to the famous BCS result, which is 2A = 3.52kgT.. We have found that the coherence length (n)
is not affected by T' in 2SC, while A decreases as T increases and vanishes at T,. In addition, we
have found that the Cooper pair wave function ®(p) is not affected by T, apart from normalization
constant. With these results, the second-order phase transition between 2SC and a normal quark
matter, which is considered to be quark-gluon plasma, can be characterized by the constant spatial
structure and decrease in the coherent Cooper pair number with increased 7. The quark density of
the 2SC has been found to be in a realistic region for compact star core. The value of 7 in 2SC is
shorter than the averaged interquark density (d). The small size of the Cooper pair suggests that
they are tightly bound and rather bosonic. Therefore, it is natural that we expect the realizability
of quark Bose-Einstein condensation phase. Some of our results, those are the larger A, higher T,
wider p region and shorter 77 in model B, suggest that the LQB gluon propagator induces stronger
quark-quark interaction than the tree-level one.

Key words: thermodynamics, color superconductor, QCD-like theory, Cooper pair
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I . Introduction

current understanding of nuclear
physics, strong interactions are ruled by quantum
chromodynamics (QCD), which is one of non-Abelian
gauge field theories. According to QCD, quark-(anti-
)quark interaction is induced by gluon (the gauge boson
in QCD) exchange.

The QCD Lagrangian is invariant under SU(3)
gauge transformation in color space. We find that
the QCD Lagrangian is difficult to handle with-
out approximation, apart from its appearance. Un-
der the circumstance, some simpler theories or mod-
els have been used for exploring QCD, such as the
Nambu-Jona-Lasinio modelY =% the instanton vacuum
model? % the quark-meson model” and the QCD-like
theory® 11,

Mapping the phase diagram of QCD is one of the

In our

0.15 =~ ~
N Quark-Gluon Plasma
0.125 N
N\
S 0.1 P
S
5 0.075 Hadronic Matter
0.05 ~
0.025 .=
2SC
: CFL
0 0.1 0.2 0.3 0.4 0.5
H{Gev)
Figure 1: A schematic representa-

tion of the expected phase diagram of
QCD matter on the T-u plane. 25C
and CFL denote two-flavour colour
superconducting and colour-flavour
locking phases, respectively.

most fundamentally interesting subject in the field of

strong interaction physics. At low temperature (7') and quark chemical potential (1), a system
of quarks and gluons lies in hadronic phase in which chiral symmetry is spontaneously broken.
Recent progress has revealed that the chiral symmetry can be restored, and quarks and gluons
will become deconfined at high T" and/or p. In addition, it is expected that quark matter at
low T" has a rich phase structure including color superconducting phase, where the quarks form
Cooper pairs, such as two-flavor color superconducting phase (2SC) and color-flavor locking
phase (CFL)12)_14). In the color superconducting phases, color symmetry is spontaneously bro-
ken.

A typical schematic picture of the QCD phase diagram is presented in Fig. 1. The dashed and
solid lines are phase transition lines. Due to the generalized Clapeyron-Clausius relation, the
dashed line is perpendicular to the longitudinal axis at u = 0 and the solid line is perpendicular
to the transverse axis at T' = 0'®). Reliable informations along the & = 0 line are available from
lattice gauge calculations'®. While, informations of finite x region are available from the above
mentioned theoretical studies. For instance, for Ny = 2 in the chiral limit, the dashed lines
mean second-order phase transition lines and the solid line means a first-order phase transition
line. We have a second-order phase transition between hadronic matter (HM) and quark-gluon
plasma (QGP) at about T'= 0.17 GeV along the 1 = 0 line, and a first-order phase transition
between HM and 25C at about p = 0.3 GeV (moderate quark density) along the T' = 0 line.
The tricritical point ‘P’ links up the second-order phase transition line to the first-order phase
transition line.

The main subject of the present study is to investigate thermodynamics of 2SC in moder-
ate p region at finite 1" within the framework of a QCD-like gauge field theory, in which an
asymptotically free momentum-dependent running coupling is used. In addition, we investigate
effect of lattice-QCD based (LQB) gluon propagator on the thermodynamics. The propagator
is considered to include all the nonperturbative effects in the quenched QCD. To the purpose,
we combine the QCD-like theory and the LQB gluon propagator in three-momentum space'?.

In the present study, we ignore the chiral symmetry broken phase and consider the matter
as the chirally symmetric system.

There have been a few reports using the QCD-like theory with a similar one-loop running
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coupling. However, all of them was performed in four dimensional space and limited to the
case at T'= 0.

In the universe, we may expect that such quark matters as 2SC and CFL exist inside compact
stars'®19 In addition, based upon compact star phenomenology, 25C can be more important
than CFL. Since the latter requires approximate flavor SU(3) symmetry, the relevant region is
at p > 0.45 GeV, of the order of strange quark mass, whereas at the center of typical compact
star, p is expected not to exceed 0.5 GeV (quark density might be as large as 10p, where
the nuclear matter density pg ~ 0.46 fm_3)19). In addition, it has shown that, if compact star
core is CFL, it is difficult to explain the majority of the X-ray data about existing compact
stars. While, 2SC is allowed to exist in the core. Because in the CFL cases, the cooling of the
compact star temperature is too fast in comparison with the observation data.?®

Throughout the paper, because strange quark is not important at low to moderate p, we
restrict ourselves to Ny = 2, corresponding to a system of only up and down quarks. The
two-flavor quark matter is unstable with respect to the formation of quark-quark (g-q) Cooper
pair condensate. The ¢-q interaction is most attractive in the Lorentz scalar, total spin singlet
(J = 0), color anti-triplet (3) and flavor anti-symmetric channel(see Appendix 8.1.3). Con-
sequently, nonzero diquark condensate (qCvsq) breaks color SU(3) symmetry down to SU(2)
symmetry?!.

The outline of the paper is as follows. In the next section, we derive the gap equation for
momentum-dependent diquark energy gap Ap at finite T in the mean-field approximation. In
section 3, we give the equation for coherence length. In section 4, we derive the thermody-
namic potential at finite 7". In section 5, we give the equation for quark density and occupation
number. In section 6, we solve the gap equation and compute Cooper pair wave function, the
coherence length and some thermodynamic quantities in two kinds of system, and present the
numerical results. Section 7 is devoted to conclusion.

II. Gap equation

In this section, we derive a gap equation of a quark superconducting state, which is called
color superconductor, for two flavors at finite temperature in mean-field approximation. In the
ordinary superconductor, electron Cooper pair is induced by phonon. While in color supercon-
ductor, quark Cooper pair is induced by gluon.

Let us start with an effective Hamiltonian with gluon exchange interaction.

H = Hy+ Hj, (1)
where
H = [E8@)6Y - mo-m)¥e) @)

2 A A
H = K [ @ty S0ap 0@ D6 - )T ), ®)

with current quark mass m, quark chemical potential y, the coupling constant g%, a coefficient
K and the color SU(3) matrices A*. Here, the function D(z — y) is a gluon propagator, which
is given by

B0y (02
D(z —y) = / d’p rl(;..i )e—z‘p(:c—y)’ @

(27)% p?
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where d(p?) is the polarization factor.

In this study, for the polarization factor, we adopt
that of the LQB gluon propagator which is derived us-
ing the quenched lattice QCD data. Usual choice of
the polarization factor in the QCD-like theory is that
of the tree-level gluon propagator, i.e., [d(p?) = 1].

The polarization factor d(p?) of the lattice-QCD-
based gluon propagator is well described by the follow-
ing analytic function'”:22) .

A 2
P+ ap”
T 5
91“.-[ + ('1’?)2 'i‘ ,JH, ( )

where p = |p|, a = 7.887 GeV?, o = 1.254 GeV?,
£ =0.7175 GeV* and Z, = 0.7172 (Fig. 1).

In this study, we concentrate on the Lorentz scalar
qC75q(gC" ) bilinears in two-flavour quark matter.

In 25C phase, diquark condensate consists of only
two of the three colors?"). Then, the Fierz-rearranged
Hamiltonian in 3-momentum space for two flavors is
given by

d(p*) =

0o 1 2 3 4 5 6 7
p (GeV)

Figure 2: The polarization factor
d(p?) of the lattice-QCD-based gluon
propagator as a function of trans-
fer momentum p exhibits the infrared
vanishing and strong enhancement at
the intermediate-energy region p ~ 1
GeV.

H = Hy+ H, (6)
where
Hy = ) (ep—pw)C*(p)CR'(P) + R— L, (7)
P
H = —50" Y D(p.)C3 (p)CE (-p)CF () (7)
X 60(;@36':5,: €st€ij
+R — L, (8)
with
dllo — /|2
D) — AP

Zy(lp —P'* + a)

p-pP|*+alp—p2P+5

9)

Here C’L"("Ls) /Cri1y denotes the creation/annihilation operator of a right(left)-handed particle
with color o and flavor s, e, = +/|p|? + m?, a, 3,7, & denote color indices, 4, j, s, t denote flavor

indices.

The present study is performed in the chiral limit(m — 0). In the chiral limit, we have

ep = p and pp = u.

Because the quarks bearing the third color are free particles, we choose a variational wave

function |¥) for 2SC of the form,
|¥) = WL UL|0),

14
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where

\I’TR . H[Up + UpCIT:Ea s(p)th( P)€aps€st], (11)
p

Here, the color indices @ and £ run from 1 to 2, and the parameters obey the constraint that
ud +v2 =1 (13)

To find the BCS state, we perform the inverse Bogoliubov -Valatin transformation. We note
that a diquark condensate consists of two quarks bearing the same helicity but different color
and flavor. Four kinds of quasiparticles exist, reflecting four kinds of relevant quarks. The
transformation is given by

(';l?l(L)( ) o Up  Up a’R(L)( )
[ (Tg(L)( p) ] B |: —Up Up :| [ CLR L)( p) ] (14)

(*;;-ZL)(P) _ [ Up  Up ] a‘%(L)(P) , (15)
C E‘{L)( p) ~Up Up aR(L)(—p)
where ak( L) /ag(ry is creation/annihilation operator that creates/annihilates a quasiparticle of

right-handed(left-handed) type.
The Hamiltonian Hg of the two-flavor superconductor in the quasiparticle basis is given by

and

GR
+(R — L)
+A,(Ct(p)C'(-p)), (16)
where
o lu, v ep — j —A Up —U }
D=|% p P P P p | 17
{_Up up}[_Ap “‘(ep_/‘)}{vp Up an
Here, we introduce a gap function Ap:
K s /
Ap = 392 > D(p, P)(¥|Cr) (—P)) ey (P eapaeat] ). (18)
pl

The values of the parameters up, and vp, are chosen so that Hg has the form of free quasipar-
ticles. After some algebra, we find that the Hamiltonian Hg is given by

As = 9, +Z[ vafl (P)ak(p) + (B~ L), (19)
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where the superscript v runs from 1 to 4, €2, is the ground state thermodynamic potential and
Ey is the energy of a free quasiparticle,

Qp = (Ne—1)Ny Z [2(% — g — 28pup0p

P

+8p < C'(-p)C'(p) > |, | (20)

&2+ AL (21)

where &, =ep — pt=p — p and g = pp in the chiral limit.
In addition, we find that

and

128

w = %(1+§—"> (22)
e L 33
%= 30-8), @
A
Uplp = ﬁ. (24)

A Cooper pair can be expressed in terms of quasiparticle operators as

C(-p)C(p) = upvp [1 - al(p)a(p) — a'(~p)a(-p)]. (25)

Here, we ignore the particle number unconcerving processes, such as afa! and aa.
The averaged quasiparticle number is expressed by the Fermi-Dirac distribution function as

1
t =
@ @) = oo
= fr(EBp). (26)
The Cooper pair wave function in the mean-field ¢(p) is given by
¢(p) = (C(-p)C(p)
.'.

= upvp [1 = (a

)
(p)a(p)) — (a'(—p)a(-p))]
UpUp [1— 2fF(Ep)

B (%) o)

Substituting eq.(27) into eq.(18), we obtain the following gap equation at finite temperature:

(N, — 1IN ; /
8y = SN2 5 Dl ) 2 s (2. (28)
p/

3 2By 2T
In the QCD-like theory, the one-loop running coupling (g) is introduced instead of the coupling

constant (g) for the quark-gluon vertex with an infrared regularization parametor (pg):

B 272h
log[(p* + p})/ Af}(-‘f_:] ’

9" — 3° (%) (29)
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where

6(NZ - 1)
2N, (11 — 2N;/3)’

b= (30)
In the present study, N. = 3 and Ny = 2.
It should be noted that the asymptotic freedom in the UV region is satisfied by adopting the

running coupling g.
Finally, we obtain the gap equation at finite temperature:

K(N,— )Nf < o, /_\ By
pl

[l. Coherence length 7

In this section, we give the expressions of coherence length 1, and averaged interquark
distance (d) of the relevant quarks in the present model. Cooper pair wave function at finite
temperature is given by

60 = [l o)

2
prdp Ap Ey
= [ 2 (pr)=Ptanh (=2 ), 32
/0 gz o Pr) o tan (2T (2)

where jo(pr) = % is the zeroth-order spherical Bessel function of the 1st kind with p = |p|
and r = |r|.
The coherence length n, which is defined by the squared mean distance of two paired particles,

can be calculated as?®,

_ ([P )
S\ [d¥rle(r) )

IV. Thermodynamic potential

In this section, we derive the thermodynamic potential €2 at finite temperature.
The Hamiltonian H including the free particles bearing the third color is given by

H = Hg + H;, (34)
where Hj is the Hamiltonian of the quarks bearing the 3rd color:

Z £CR*(p)C%*(p) + R — L, (35)

with C, '“ /€ 'H ;) denotes the creation/annihilation operator of a right(left)-handed particle
with colot 3 Alul flavor s.
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The partition function Z is given by

Z = Trexp (w)

- %, [Foatl (@)at(e) + &CE"(p)CY () + (R - L)
T
e _ 2AN.—1)Ny - 2Ny
02, - n- By n- fp
= exp [—?] HZexp (— T ) [Hanp (
p n=0 p o ne=(0
Q, E, 2N —~1)N; & 2N,
= exp [—?] : H [1 + exp (—?ﬂ : H 1 + exp —7 . (36)
P P
Then, the thermodynamic potential €2 is given by
Q = —-TInZ
E
B S )

P

—2NfTZIH {1 + exp ( 5")] : (37)

where

Qy = (Ne—1)Ng Z [2(% - #)|Up|2 . 2Apupvp]
+Ap < C’f(—p)CT(p) >
. (Nc - 1)Nf Z [fp —Ep+ Ap<CT(_p)CT(P)>]

p

oo Efone () w

P

V. Quark density and Occupation number

In this section, we give expressions quark density and then, derive a relationship of the
thermodynamic potential with the occupation number.
Quark density p is a integration of occupation number n(p) with respect to momentum p :

dp
The same quark density p can be calculated from thermodynamic potential  as follows :
o0
e 40
=5 (40)

18



Then, we have

o d*,
-5 = | Gante) (a1)

Averaged interparticle distance d of the relevant quarks is given by

g (%) | (42)

VI . Numerical calculations

In this section, after obtaining the momentum-dependent pair wave function by solving the gap
equation, we calculate the coherence length 7 of quark Cooper pairs and several thermodynamic
quantities in the chiral limit (m = 0). To evaluate the effect of the LQB gluon propagator,
we perform the calculations in two kinds of systems. One is a system with a tree-level gluon
propagator (model A), the other is a system with the LQB gluon propagator (model B). For the
numerical calculation, we set the values of Agop and the infrared regulator(pg) in the running
coupling to 0.738 GeV and 0.776 GeV (i.e.log(ph/Apep) = 0.1), respectively'®.

In addition, we set the value of the coefficient K to %. Then, as seen below, we obtain a
reasonable value of the coherence length. Our result is very close to that of another study,
which includes Debye mass screening effect?”). Furthermore, the ratio ZA;‘:;[,‘F (kgT.) in our
model has a very close value to the famous BCS result.

Since (p—p')? in the propagator is a gluon momentum, the most natural form of the running
coupling and the propagator would be g2((p—p')?) and D((p—p’)?), respectively. However, the
momentum dependence would bring about many difficulties in actual numerical calculations.
Therefore, assuming that the effect of the angle dependent part —2pp’cosf in (p — p')? is

negligible on average, we approximate the running coupling and the propagator as'0),
Fo,p) =~ F0"+0%), (43)
D(p,p) =~ D(p"+p"). (44)

Most of our numerical calculations are performed at 4 = 0.35 GeV. Because the region be-
tween 1 = 0.3 GeV and u = 0.4 GeV is the most probable area for existence of 25C. In high-4
region, strangeness is important. As the value of y1 decreases, strangeness becomes unimpor-
tant. Accordingly, in low to moderate-u region, especially near the chiral symmetry restorating
point, chirally symmetric quark matter may lie in a 23C phase that is made up of only up and
down quarks.

The diquark energy gaps A at p = pp in model A (A4) and model B (Ap) at = 0.35 GeV
as functions of T are displayed in Figure 3. Ap has a higher amplitude than A4 at each T'.
The values of A4 and Ap decrease monotonically as T' grows and vanish at T' = 0.0125 GeV
and T = 0.0245 GeV, respectively. The values of 2AT=) /(kpT:) are 3.31 in model A and 3.43
in model B, where kg is the Boltzmann constant. kg = 1 in the present study.

Figure 4 displays diquark energy gaps Aa(p) and Ag(p) at (T, 1) = (0,0.35) GeV as functions
of p apart from unimportant normalization constant. The two lines cross at p = 0.125 GeV and
A4(p) < Ap(p) at higher p. These two gaps decrease monotonically as p increases and vanish
at about p = 1.0 GeV.

Figure 5 displays Cooper pair wave functions ®4(p) (model A) and ®p(p) (model B) in
momentum space at (T,u) = (0,0.35) GeV. The functions cross at p = 0.125 GeV, and
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Pa(p)<Pp(p) at larger p. These two functions exhibit a strong enhancement at p = pg.
The crossing point is located at the same momentum as in the A(p) functions (Fig.4).

Figure 6 displays Cooper pair wave functions |®4(r)| and |®g(r)| in co-ordinate space at
(T,p) = (0.01,0.35) GeV, where r is a relative distance. The values of ®(r) decreases as r
increases and vanish at about r ~ 2.0 fm. We can see that the function |®g(r)| is deviated to
short distance in comparison with |®4(r)|.

Figure 7 shows coherence lengths 74, 7 and averaged interquark distance d as functions of
T at = 0.35 GeV. The coherence lengths are almost constant up to 7, and d>n,>ng below
T..

In Figure 8, the dotted line shows occupation number n(p) as a function of p at (T, u) =
(0,0.35) GeV in model B. The quarks bearing the third color is ignored. This fact is reflected
in the scale of the vertical axis (2 helicitiesx2 flavoursx2 colors= 8 degrees of freedom). The
true line shows the Fermi-Dirac distribution at 7" = 0. We can see that, as is well known
in the ordinary BCS theory, the occupation numbers do not take the form of a Fermi-Dirac
step-like function, because Cooper pairs of fermions with momenta above and below u smear
the Fermi surface and consequently transform the step-shaped line into continuous line at the
Fermi momentum (pr = p).

Figure 9 shows a quark density p/po vs T at u = 0.35 GeV in model B. The value of p is

within the realistic density as a compact star core (p ~ 2.4pg, where py denotes nuclear matter
density).
Figure 10 displays the critical temperatures T,(A) and T.(B) as functions of u. The T,(A) line
forms a concave line and reaches zero at u = 0.6 GeV. While, the T,(B) line takes a form of
a convex function and has a finite value at u = 0.6 GeV. In this study, realizability of the
hadronic phase is ignored.
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Figure 3: Diquark energy gaps A at p = pr in model A (A4) and model B (Ap) with = 0.35
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Figure 4: Diquark energy gaps A4 and Ap at (T, u) = (0,0.35) GeV as functions of p. The
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0.125 GeV and A4 < Ap at larger p.
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Figure 5: Cooper pair wave functions ®4(p) (model A) and ®5(p) (model B) in momentum
space at (T, ) = (0,0.35) GeV apart from unimportant normalization constant. With these
results,. The functions cross at p = 0.125 GeV, and ®4(p)<Pp(p) at larger p. These two

functions exhibit a strong enhancement at p = pp.
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Figure 6: Cooper pair wave functions |®4(r)| and |®p(r)| in co-ordinate space at (T, u) =
(0.01,0.35) GeV. |®p(r)| is deviated to short distance in comparison with |®4(r)|. The two

functions vanish at r ~ 2fm.
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Figure 7: Coherence lengths 14, np and averaged interquark distance d as functions of T' at
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Figure 8: The doted line shows the occupation number n(p) as a function of p at (T, u) =
(0,0.35) GeV in model B without quarks bearing the third color. The true line shows the
Fermi-Dirac step-like distribution.
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Figure 10: Critical temperatures T.(A) and T,(B) as functions of u. The T,(A) line takes a
form of a concave function and reaches zero at u = 0.6 GeV. While, the T,(B) line takes a form
of a convex function and has a finite value at u = 0.6 GeV. In the figure, realizability of the
hadronic phase is ignored.
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V]I . Conclusion

We have investigated the thermodynamics of two-flavor color superconductor at finite tem-
perature (7)) and quark chemical potential (1) within the framework of a QCD-like effective
theory with a tree-level gluon propagator (model A) and with the lattice-QCD based (LQB)
gluon propagator (model B). Then, we have evaluated the effect of LQB gluon propagator on
thermodynamics of two-flavor color superconductor (25C).

Most of our numerical calculations are performed at p = 0.35 GeV. Because the region
between = 0.3 GeV and u = 0.4 GeV is the most probable area for existence of 2SC.

We have introduced an arbitrary coefficient K into our model instead of Debye screening mass
and other quark density dependent factors, which weeken the quark-quark coupling strength.
Expecting that the coefficient may compensate for exclusion of the effects of Debye screening
and quark density on the coupling strength, we have set the value of K to i, then we have
found that the coherence length in our model is about 1fm. Our numerical result is almost
the same as the result in another study, which includes Debye mass screening effect?”. Fur-
thermore, we have found that the ratio 2AJ=) /(kpT,) (A:energy gap, kp:Boltzmann constant,
T,:critical temperature) in our model has a very close value to the famous BCS result. We have
2Af>—_r?; — 3.43kpT. in model B. This ratio A/T, is very close to the famous BCS result, which
is 2A = 3.52kgT..

The entropies of the two systems (model A and B) change continuously at T, and conse-
quently, the latent heat is not generated. This result means that the phase transiton between
2SC and a normal quark matter, which is considered to be a quark-gluon plasma (QGP) is a
second-order one.

The coherence lengths are almost constant up to 7, and d>n4>np below T,. While A de-
creases as T increases and vanishes at 7,. In addition, we have found that the Cooper pair
wave function ®(p) is not affected by T, apart from normalization constant. With these results,
the second-order phase transition between 2SC and QGP can be characterized by the constant
spatial structure of a Cooper pair and decrease in the coherent Cooper pair number with in-
creased T

The small size of the Cooper pair suggests that they are tightly bound and rather bosonic.
Therefore, it is natural that we expect the realizability of quark Bose-Einstein condensation
phase.

The amplitudes of ®(p) and A(p) in model B are larger than those in model A at p > 0.125
GeV, and the region of u that 25C possibly exist in model B is wider than that in model A.

Some of our results, the larger A, higher T., wider p region and shorter 7 in model B suggest
that the LQB gluon propagator induces stronger quark-quark interaction than the tree-level
one.
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VL. Appendix

In this appendix, we derive the Fierz-rearranged Hamiltonian with single-gluon exchange
interaction for 2SC and the entropy at T¢.

WI.1 Fierz rearrangement

Our effective Hamiltonian with single-gluon exchange interaction is

=5 / EadyT (), U@l — )Ty (), (45)
where

Diquark condensate induced by single-gluon exchange is made up of identical fermions with
the same helicity, antisymmetry in flavor and in color, forming a 3.

An effective diquark interaction is obtained by first transposing and then performing the
Fierz rearrangement. Due to the tensor product structure of the matrices, one has to transform
separately the color, flavor and Dirac parts by using appropriate identities to each of them.

As a first step, noting that Cy*CT = — ()T we transpose the latter half of the above Hamil-
tonian, accounting for the fact that fermion fields anticommute, which generates an additional
(—1) in the Hamiltonian. Then, we have

2 A A
Hi ==L [ @at @y v@)De - e oyt O (), (47)

where C is the charge-conjugation matrix (#429°) and the superscript T stands for transposition.
As a second step, we transform the Hamiltonian with regerd to the Gell-Mann matrices, the

flavor matrix and the v matrices as follows.

Wi.1.1 Gell-Mann matrices

I = [\I/ ()T V8 (2 )} W) T3 (y))]

= - [WEHO)]- [V TiTEYE)], (48)
where T = %
Using an identity,
1 il
T T = 567[;5(15 NG ——0,5008
1 1
= 5 (0ypdas — 0y50ap) + & (drplas — Oy50ap)

1 1
gea'ynftiﬂn T 6 (6'7,66015 - 576501[3) ) (49)

we select the color antisymmetric structure I; that is made up of two colors:

1= =3 [0 @) B (0)ews] - [W0) W ). (50)
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WI.1.2 Flavor matrix

$ - =
L = [T@)6%@)]  [Vr@)amTso)]
=5 =l o
= - [BETW)] - [P0 5()] .
The Kronecker delta is related to the Levi-Civita antisymmetric symbol € as

a .a
6lm65t = 26lsemt + TimTsts

1_0]- 2__0—@' 3_10
T_[IO}’T_ i 0o |7 T lo 1]

We select the flavor antisymmetric structure I

where

Iy = =2 [T (@) T 0)en] - [97 @) W5(@)em].

M.1.3 Gamma matrices

Iy = [T(@)%()| Dl —y) [{Lay)CY{C'To(v)}]

= -D(z - ) [TEHCTW)Y] [t Taw)CH v @)]

Using an identity?),

1 1
Yiuii Yoy = — ()it (V) + 1 — 5(7“75%1(%75)@ = 5(’7”)u(7u)ka‘a

we select the Lorentz scalar structure I:

I, = Dz —9) [, (@)05)a{ CT0)} ] {Paw)C (1)1 ¥5(2)

(53)

(54)

(55)

(56)

(57)

As a third step, we collect the Lorentz scalar, color antisymmetric and flavor antisymmetric

terms and multiply them.

1

I'= 3 x2% (-1) [-D(@ - )T @)C16 T, W)eame"] [¥]" W) V(o™ |, (58)

where 7° = i7°y'72y% and vsCT = Cls.

VI.1.4 Fourier transformation

Using Fourier transformation, we can derive the Hamiltonian in three-momentum space as

below,

. Byl o iy
\I/s(a;) :/iqj (p/)ezpm'

(2m)3 "~ °

=78 k' =18, 1\
7w = [ ()
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) = [ ke 1)

L (62)

Integration with respect to  and y in the co-ordinate space is immediate.

/d3m/d3ye—iq(z—y) . e'ip’:z: . eik’y . e—iky . e—ipm
— /dsw/dSye_zz(q+p_p,) ely(_q‘i‘k—kl)

= (2m)°6(q+p—p)(2m)°(~a+k - k) (63)

The resultant Hamiltonian in the momentum space is

_ K d*q d*p’ d>k d*k d®p
i = 59 | e | oy | oy | oy | e

x6(q+p —p)i(—q+k— k’)?@ () CMys T, " (K)Cys UT (k)T (p)

X €ap3€ 5367 €™ (64)

After integrating out with respect to g and k', we have

- K Tard d*k d*p
Hr = 4 f J 3 / 2 ) / j'i
3 (27)* (2m) (27)’

1 —a y =Tp
o (©)C™sT, " (p = 1 + k)9 (k) Crs U0, (p)
X Ga‘g3€75363t€lm (65)

Furthermore we select a zero-momentum Cooper pair, which has the lowest energy. Then,
noting that a quark Cooper pair induced by single-gluon exchange is made up of quarks with
the same helicity, we finally obtain the interaction Hamiltonian in momentum space:

. K d*p! d3k d*p
g = 2g
! 3g /(27[’)3 (271')3/(2?1')3

x(2m)*8(p + k) T (0)Clys Ty (p — 0 + k) U3 (k) Crs 05" (p)

1
(p—p')*
X €aB3€153€st€Im
+R — L
K (13?]" rf:i;{j! 1 —a,s =0t l &m
— §g2/ ) / (21) (p— /)2 T3 (0) Oty Uy (—p ) UL (—p) Crys W™ (p)
X €ap3€163€ st Elm

+R — L. (66)

In the text, in order to simplify algebra, we neglect two factors (Cvs and CTvs) in the above
Hamiltonian,
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Wll.2 Second order phase transition

In the study, we ignore interactions between quasiparticles.
Then, the entropy density S of 2SC in the present system is given by that of a free fermion
system as

S = —2(Ne = )Ny Y (1 = fr(Bp)n(l — fr(Ep)) + fr(Ep)n(fr(Ep))) - (67)

At the critical temperature, the entropy density changes continuously into that of a normal
quark matter (quark-gluon plasma) :

S = —2(Ne—1)Ns Y [(1 = fr(lépn(t — fr(l&])) + fr(&In(fr (I ])]

= —2(N.— )N > (1= fr(&)n(1 = fr(&p)) + Fr(&e)n(fr(&)]. (68)

P

This means that the phase transition is the second order one.
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